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Abstract. We provide an overview of recent work exploring the quark-mass dependence of hadronic ob-
servables and the associated role of chiral non-analytic behavior due to the meson-cloud of hadrons. In
particular, we address an issue of great current interest, namely the degree of model independence of
results obtained through a controlled extrapolation of lattice QCD simulation results. Physical insights
gained from this research are highlighted. We emphasize how chiral effective field theory formulated with
a finite-range regulator provides a reliable and model-independent extrapolation to the physical world.

PACS. 12.38.Gc Lattice QCD calculations – 11.30.Rd Chiral symmetries – 24.85.+p Quarks, gluons, and
QCD in nuclei and nuclear processes

1 Introduction

Quark nuclear physics describes our attempts to under-
stand the structure of hadronic systems, including nuclei
and dense matter, in terms of quarks and gluons —the
fundamental degrees of freedom in QCD. It is impossi-
ble in just a few pages to provide even a vague outline
of the many exciting physics issues currently being ad-
dressed in this field —from the possible phase transition
to one or more quark-gluon phases at high temperature or
density [1], to suggestions of changes of hadron properties
in-medium [2,3]. Instead, we shall concentrate on just one
development which offers considerable insight into hadron
structure from QCD itself, an approach which has led to
surprisingly accurate comparisons between lattice QCD
data and experiment as well as remarkable insights into
how one might improve hadron models.

As the time for calculations within lattice QCD [4]
with dynamical fermions (including q-q̄ creation and an-
nihilation in the vacuum) scales as m−3.6

q [5], current cal-
culations have been limited to light quark masses 6–10
times larger than the physical ones. With the next gen-
eration of supercomputers, around 10 Teraflops, it should
be possible to get as low as 2–3 times the physical quark
mass, but to actually reach that goal on an acceptable vol-
ume will require at least 500 Teraflops. This is probably
10–20 years away.

Since a major motivation for lattice QCD must be to
unambiguously compare the calculations of hadron prop-
erties with experiment, this is somewhat disappointing.
The only remedy for the next decade at least is to find a
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way to extrapolate masses, form-factors, and so on, cal-
culated at a range of masses considerably larger than the
physical ones, to the chiral limit. In an effort to avoid the-
oretical bias this has usually been done through low-order
polynomial fits as a function of quark mass. Unfortunately,
as we discuss in sect. 2, this is incorrect and can yield quite
misleading results because of the Goldstone nature of the
pion.

The essential problem in performing calculations at
realistic quark masses (of order 5 MeV) is the approxi-
mate chiral symmetry of QCD. Goldstone’s theorem tells
us that chiral symmetry is dynamically broken and that
the non-perturbative vacuum is highly non-trivial [6], with
massless Goldstone bosons in the limit mq → 0. For fi-
nite quark mass these bosons are the three charge states
of the pion with a mass m2

π ∝ mq. Although this re-
sult strictly holds only for m2

π near zero (the Gell-Mann–
Oakes–Renner relation), lattice simulations show it is a
good approximation for m2

π up to 1 GeV2 or so, and we
shall use m2

π here as a measure of the deviation from the
chiral limit.

On these very general grounds, one is therefore com-
pelled to incorporate the non-analyticity into any extrap-
olation procedure. The classical approach to this prob-
lem is chiral perturbation theory (χpt), an effective field
theory built upon the symmetries of QCD [7]. There is
considerable evidence that the scale naturally associated
with chiral symmetry breaking in QCD, ΛχSB, is of order
4πfπ, or about 1 GeV. χpt then leads to an expansion in
powers of mπ/ΛχSB and p/ΛχSB, with p a typical momen-
tum scale for the process under consideration. At O(p4),
the corresponding effective Lagrangian has only a small
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number of unknown coefficients which can be determined
from experiment. On the other hand, at O(p6) there are
more than 100 unknown parameters [8], far too many to
determine phenomenologically.

While this situation seems formidable, the resolution
is already in hand. We must first realize that the lattice
data obtained so far represents a wealth of information on
the properties of hadrons within QCD itself over a range of
quark masses. Just as the study of QCD as a function ofNc

has taught us a great deal, so the behaviour as a function
of mq can yield considerable insight into hadronic physics.

The first thing that stands out, once one views the data
as a whole, is just how smoothly every hadron property
behaves in the region of large quark mass. In fact, baryon
masses behave like a+ bmq, magnetic moments like (c+
dmq)−1, charge radii squared like (e + f mq)−1 and so
on. Thus, if one defined a light “constituent quark mass”
as M ≡ M0 + c̃ mq (with c̃ ∼ 1), one would find baryon
masses proportional to M (times the number of u and d
quarks), magnetic moments proportional to M−1 and so
on —just as in the constituent quark picture. There is
little or no evidence for the rapid non-linearity associated
with the branch cuts created by Goldstone boson loops.

Over the past few years we have come to a deep un-
derstanding of why QCD exhibits these features. It will
be helpful to summarise those conclusions here:
– In the region of quark masses mq > 60 MeV or so (mπ

greater than typically 400–500 MeV) hadron proper-
ties are smooth, slowly varying functions of something
like a constituent quark mass, M ∼ M0 + cmq (with
c ∼ 1).

– Indeed, MN ∼ 3M,Mρ,ω ∼ 2M and magnetic mo-
ments behave like 1/M .

– As mq decreases below 60 MeV or so, chiral symmetry
leads to rapid, non-analytic variation, with δMN ∼
mq

3/2, δµH ∼ mq
1/2 and δ〈r2〉ch ∼ lnmq.

– Chiral quark models like the cloudy bag [9–11] provide
a natural explanation of this transition. The scale is ba-
sically set by the inverse size of the composite source,
above which chiral loops are strongly suppressed. Be-
low this scale, the pion Compton wavelength is larger
than the source and one begins to see rapid, non-
analytic chiral corrections.
These are remarkable results that will have profound

consequences for our further exploration of hadron struc-
ture within QCD as well as the analysis of the vast amount
of data now being taken concerning unstable resonances.
In terms of immediate results for the structure of the nu-
cleon, we note that the careful incorporation of the cor-
rect chiral behaviour of QCD into the extrapolation of its
properties calculated on the lattice has produced:
i) The most accurate values of the proton and neutron

magnetic moments from lattice QCD [12].
ii) The most accurate value of the sigma commutator

from lattice QCD [13].
iii) The most accurate values for the charge radii of the

baryon octet from lattice QCD [14].
iv) The most accurate values for the magnetic moments

of the hyperons from lattice QCD [15,16].

v) Good agreement between the extrapolated moments of
the non-singlet distribution, u−d, calculated in lattice
QCD and the experimentally measured moments [17,
18].

vi) The most accurate estimates of the low moments of
the spin-dependent parton distribution functions at
the physical quark mass from lattice QCD [19].

vii) An understanding of the failures of the assumption of
universality of quark electromagnetic properties [20]
and an improved lattice estimate of the strangeness
magnetic moment of the proton Gs

M [21].

Furthermore, this approach, together with the observed
constituent-quark–like behaviour seen in the lattice data
for mq > 50 MeV (as noted earlier), has suggested a novel
way of modelling hadron structure [22,23].

Apart from the original publications, these develop-
ments have been fairly widely reported at various confer-
ences —e.g. see refs. [24,25]. Here we focus particularly
on the question of the extrapolation of hadron masses in
order to clarify an issue of great current interest, namely
the degree of model independence of the results obtained
after a controlled chiral extrapolation.

2 Effective field theory

Chiral perturbation theory is a low-energy effective field
theory for QCD. Low-energy properties of QCD can be
expanded about the limit of vanishing momenta and quark
mass. In relation to the extrapolation of lattice data, χpt
provides a functional form applicable in the limitmπ → 0.

Goldstone boson loops give rise to specific corrections
to baryon properties —most importantly, they give rise to
non-analytic behaviour as a function of quark mass. The
low-order, non-analytic contributions arise from the pole
in the Goldstone boson propagator and hence are model-
independent [26]. Analytic variation of hadron properties
is not constrained via the symmetry and hence expan-
sions contain free parameters which must be determined
by comparison with data.

Effective field theory then tells us that the general ex-
pansion of the nucleon mass about the SU(2) chiral limit is

mN = α0 + α2m
2
π + α4m

4
π

+σNπ(mπ, Λ) + σ∆π(mπ, Λ) + . . . , (1)

where σBπ is the self-energy arising from a Bπ loop
(B = N or ∆). The expansion has been written explicitly
in this form to highlight that the theory is equivalently
defined for an arbitrary regulator —see ref. [27] for a
complete discussion.

The traditional approach within the literature is to
use dimensional regularisation to evaluate the self-energy
integrals. Under such a scheme, the NNπ contribution
simply becomes σNπ(mπ, Λ) → cLNAm

3
π and the analytic

terms, αnm
n
π, undergo an infinite renormalisation. The ∆

contribution behaves similarly, producing a logarithm and
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one obtains a series expansion of the nucleon mass about
mπ = 0:

mN = c0 + c2m2
π + c4m4

π

+cLNAm
3
π + cNLNAm

4
π lnmπ + . . . , (2)

where the αi have been replaced by the renormalised (and
finite) parameters ci.

It is not clear, a priori, that any such truncated expan-
sion will be capable of reliably fitting lattice data. The first
empirical indication of serious problems in this approach
came with the realization that lattice data could not re-
cover the model-independent coefficient, cLNA. Truncating
the power series at the m3

π term and allowing cLNA to
vary as a free fit parameter, together with c0 and c2, pro-
duced a value cLNA ∼ −0.76 GeV−2 [28]. This should be
compared with the physical value of −5.6 GeV−2 —a fac-
tor of 8 larger! This tells us immediately that either there
are serious convergence problems with the third-order ex-
pansion or lattice QCD is in error. Clearly, most readers
would opt for the first possibility and so do we.

Even by retaining all terms as described in eq. (2), it is
not clear that reliable extrapolation can be guaranteed by
fitting lattice data over a range of (heavy) quark masses.
One point of issue is that it is derived in the limit mπ 	
∆(≡ m∆ −mN ), whereas the lowest lattice data with dy-
namical fermions that one can expect in the next decade
is perhaps 200–250 MeV —cf. ∆ = 292 MeV. It should be
clear to those familiar with lattice simulations that even at
this lightest pion mass the branch cut will not be observed
due to the restricted phase space on a finite-volume lat-
tice. Consequently, all lattice data will still lie above ∆.
Mathematically, the region mπ ≈ ∆ is dominated by a
square-root branch cut which starts at mπ = ∆. Using
dimensional regularisation this takes the form[29]

6g2A
25π2f2

π

[
(∆2 −m2

π)
3
2 ln(∆+mπ −

√
∆2 −m2

π)

−∆
2

(2∆2 − 3m2
π) lnmπ

]
, (3)

formπ < ∆, while formπ > ∆ the first logarithm becomes
an arctangent. No serious attempt has been made to
extend the formal expansion in eq. (2) to incorporate this
cut in an analysis of lattice data and, given the number
of parameters to be determined if one works to order m6

π,
it is not likely that it will be done in the next decade.

Even ignoring the ∆π cut for a short time, studies of
the formal expansion of the N → Nπ → N self-energy in-
tegral, σNπ, suggest that it has abysmal convergence prop-
erties. Using a sharp, ultra-violet cut-off, Wright showed
[30] that the series diverged for mπ > 0.4 GeV. If one
instead uses a dipole cut-off, which in view of the phe-
nomenological shape of the nucleon’s axial form-factor is
much more realistic, it is worse —with the radius of con-
vergence being around 0.25 GeV. We return to this in
sect. 3.

The main issue of the convergence of this truncated
series, eq. (2), has its origin fixed in the formalism that

it is derived from the general form of eq. (1). The dimen-
sionally regulated approach requires that the pion mass
remain much lighter than every other mass scale involved
in the problem. This requires that mπ/ΛχSB 	 1 and
mπ/∆ 	 1. A further scale, as addressed in the intro-
duction, is set by the physical extent of the source of the
pion field. This scale, Λ ∼ R−1

SOURCE, corresponds to the
transition between rapid, non-linear variation and smooth,
constituent-like quark mass behaviour. An alternative pro-
cedure would be to regulate eq. (1) with a finite Λ which
physically corresponds to the source of the meson cloud
having an extended structure.

In summary, the low-energy effective field theory can
be very useful in describing the quark mass behaviour of
hadron properties. These powers have unfortunately been
lost in the literature, where only a single type of regulator
(i.e. dimensional) has been studied in detail.

3 Accurate, model-independent method of
chiral extrapolation

We now turn to the direct application of eq. (1), written
in a regulator independent form, to the extrapolation of
lattice data. By studying a range of different regulators,
both finite-ranged, and the dimensional approach, we can
study the sensitivity to the form chosen.

The additional analytic term, α4m
4
π, differs from pre-

vious studies using a finite-ranged regulator [28]. Since one
is working to non-analytic order m4

π logmπ, one is cer-
tainly permitted freedom in α4 [27]. In practice, whether
or not this can be reliably determined, together with Λ,
will depend on the data available.

The self-energies, σBπ, are evaluated with a variety
of regulators. Included here are both that of the trun-
cated power series resulting from dimensional regularisa-
tion and also those of finite range, including sharp cut-off,
monopole, dipole and Gaussian. The coefficients of non-
analytic terms are constrained to their phenomenological
values, while the parameters αi and Λ are then determined
by fitting lattice data.

It is again worth noting that, independent of regulator,
precisely the same expansion of eq. (2) will be obtained
in the limit mπ 	 Λ. Although the parameters αi will
depend upon the choice of regulator, one can expand the
self-energy terms to order m2

π (or higher) to obtain the
chiral coefficients at the appropriate order and compare
with the truncated expansion of eq. (2) —see ref. [27] for
a full discussion of this issue.

The results of our fits to lattice data studied with a
range of regulators are shown in fig. 1. The short-dashed
curve shows the fit obtained using the dimensionally reg-
ulated form of eq. (2) extended to a further term in the
expansion, α6m

6
π. This additional term is necessary for a

more reasonable fit due to the large NLNA contribution.
The long-dashed curve is the result of using a sharp cut-
off regulator, while the following three fits (solid curves),
indistinguishable in this plot correspond to the monopole,
dipole and Gaussian regulated forms.
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Fig. 1. Fits to lattice data [31] for five different ultra-violet
regulators.
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Fig. 2. The fit to the lattice data using the dipole regulator.
The dashed curves show power series expansions of this fit to
successive orders in mπ for m2

π → m6
π.

The extrapolation of lattice data is clearly independent
of the choice of finite, ultra-violet regulator. Knowing this,
we can examine the range of convergence of a truncated
power series. Selecting the dipole form and neglecting the
∆π contribution to the nucleon self-energy, one can obtain
a closed analytic expression. An expansion in powers of the
pion mass is shown in fig. 2. Here we see that convergence
of the expansion to order m6

π breaks down above mπ ∼
250 MeV.

For the reasons outlined, it is essential that the self-
energies are evaluated using some ultra-violet regulator
—a sharp cut-off or a dipole form, for example. Whatever
is chosen does not effect the non-analytic structure which
is guaranteed correct. The branch points at mπ equal zero
and ∆ are incorporated naturally. The use of a finite reg-
ulator then automatically produces the transition scale
associated with the physical extent of the meson source.

The essential point is that studies of the nucleon (cf.
ref. [30] and fig. 1), the∆ (cf. fig. 4 of Leinweber et al. [28])
and the ρ meson [32] suggest that this procedure will result
in little or no model dependence in the extrapolation to the
physical pion mass once there is accurate lattice data for
mπ ∼ 0.3 GeV or less. Physically, this is possible because

Fig. 3. Fits to both quenched (open triangles) and dynamical
(closed triangles) lattice data [33] using a dipole regulator [34].

the self-energy loops are rapidly suppressed in the region
mπ > 0.4 GeV. Thus, an extrapolation based on eq. (1)
formulated with the selection of a long-distance regula-
tor allows one to respect all the chiral constraints, keep
the number of fitting parameters low and yield essentially
model-independent results at the physical pion mass. No
other approach can do this.

4 Possible connection to QQCD

Although quenched QCD (QQCD) is an unphysical the-
ory, it provides an alternative avenue for enhancing our
understanding of chiral extrapolation. Multi-mass tech-
niques allow a dense set of quark masses to be simulated
with relative computational ease. Together with recent ad-
vances in numerical techniques, which allow simulations
to be performed at light quarks masses [35], one will be
able to very accurately determine the quark mass depen-
dence of quenched simulations within the light-quark-mass
regime.

The study of baryon spectroscopy in quenched lat-
tice QCD has recently made great progress. We have al-
ready noted that the lattice data behaves like a constituent
quark model for quark masses above 50–60 MeV because
Goldstone boson loops are strongly suppressed in this re-
gion. This not only provides a very natural explanation
of the similarity of quenched and full data in this region
but it also suggests a much more ambitious approach to
hadron spectra. It suggests that one might remove the
small effects of Goldstone boson loops in QQCD (includ-
ing the η′) and then estimate the hadron masses in full
QCD by introducing the Goldstone loops which yield the
LNA and NLNA behaviour in full QCD.

As a first test of this idea, Young et al. [34] recently
analysed the MILC data [33] for the N and∆, using eq. (1)
(with α4 = 0) for full QCD and the appropriate general-
ization for QQCD —i.e. using quenched pion couplings as
well as the single- and double-“hairpin” η′ loops [36,37].
The results illustrated in fig. 3 are remarkable. The values
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of α0 and α2 for the N (or the ∆) obtained in QQCD
agree within statistical errors with those obtained in full
QCD. Certainly this result (unlike the result for the ex-
trapolation of individual hadron masses as noted above)
is somewhat dependent on the shape of the ultra-violet
cut-off chosen —although the extent of that is yet to be
studied in detail. Nevertheless, given that the study in-
volved the phenomenologically favoured dipole form, it is
a remarkable result and merits further investigation.

5 Conclusion

At the present time we have a wonderful conjunction of
opportunities. Modern accelerator facilities are providing
data of unprecedented precision over a tremendous kine-
matic range at the same time as numerical simulations of
lattice QCD are delivering results of impressive accuracy.
It is therefore timely to ask how to use these advances to
develop a new and deeper understanding of hadron struc-
ture and dynamics.

We have demonstrated that the use of chiral effective
field theory can provide accurate extrapolation formulae.
In particular, we have shown that the extrapolation of the
nucleon mass exhibits minimal model dependence in the
choice of finite-ranged, ultra-violet regulator.

In combination with the very successful techniques
for chiral extrapolation, lattice QCD will finally yield
accurate data on the consequences of non-perturbative
QCD. Furthermore, the physical insights obtained from
the study of hadron properties as a function of quark mass
will guide the development of new quark models and hence
a much more realistic picture of hadron structure.
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to our understanding of the problems discussed here, notably
Jonathon Ashley, Ian Cloet, Will Detmold, Wally Melnitchouk,
Stewart Wright and James Zanotti. This work was supported
by the Australian Research Council and the University of Ade-
laide.
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